Neurons preferentially respond to self-MHC class I allele products regardless of peptide presented.

نویسندگان

  • Nathalie Escande-Beillard
  • Lorraine Washburn
  • Dan Zekzer
  • Zhongqi-Phyllis Wu
  • Shoshy Eitan
  • Sonja Ivkovic
  • Yuxin Lu
  • Hoa Dang
  • Blake Middleton
  • Tina V Bilousova
  • Yoshitaka Yoshimura
  • Christopher J Evans
  • Sebastian Joyce
  • Jide Tian
  • Daniel L Kaufman
چکیده

Studies of mice lacking MHC class I (MHC I)-associated proteins have demonstrated a role for MHC I in neurodevelopment. A central question arising from these observations is whether neuronal recognition of MHC I has specificity for the MHC I allele product and the peptide presented. Using a well-established embryonic retina explant system, we observed that picomolar levels of a recombinant self-MHC I molecule inhibited neurite outgrowth. We then assessed the neurobiological activity of a panel of recombinant soluble MHC Is, consisting of different MHC I heavy chains with a defined self- or nonself-peptide presented, on cultured embryonic retinas from mice with different MHC I haplotypes. We observed that self-MHC I allele products had greater inhibitory neuroactivity than nonself-MHC I molecules, regardless of the nature of the peptide presented, a pattern akin to MHC I recognition by some innate immune system receptors. However, self-MHC I molecules had no effect on retinas from MHC I-deficient mice. These observations suggest that neuronal recognition of MHC I may be coordinated with the inherited MHC I alleles, as occurs in the innate immune system. Consistent with this notion, we show that MHC I and MHC I receptors are coexpressed by precursor cells at the earliest stages of retina development, which could enable such coordination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Social discrimination by quantitative assessment of immunogenetic similarity.

Genes of the major histocompatibility complex (MHC) that underlie the adaptive immune system may allow vertebrates to recognize their kin. True kin-recognition genes should produce signalling products to which organisms can respond. Allelic variation in the peptide-binding region (PBR) of MHC molecules determines the pool of peptides that can be presented to trigger an immune response. To exami...

متن کامل

Recognition of xeno-(HLA, SLA) major histocompatibility complex antigens by mouse cytotoxic T cells is not H-2 restricted: a study with transgenic mice.

Cytotoxic T lymphocytes (CTLs) recognize antigens in the context of major histocompatibility complex (MHC) class I gene products. The T-cell receptor (TCR) that mediates this MHC-restricted antigen recognition recognizes short peptide fragments rather than the intact antigen. Presentation of peptides to the TCR may thus be a major function of the MHC. An intriguing question emerging from this m...

متن کامل

Recognition of a sequestered self peptide by influenza virus-specific CD8+ cytolytic T lymphocytes.

The Ag receptors on CD8+ CTL recognize foreign antigenic peptides associated with cell surface MHC class I molecules. Peptides derived from self proteins are also normally presented by MHC class I molecules. Here we report that an H-2Kd-restricted murine CD8+ CTL clone directed to an influenza hemagglutinin epitope can recognize a peptide derived from the murine mitochondrial aconitase enzyme i...

متن کامل

Presentation of a self-peptide for in vivo tolerance induction of CD4+ T cells is governed by a processing factor that maps to the class II region of the major histocompatibility complex locus

Self-proteins are regularly processed for presentation to autoreactive T cells in association with both class I and class II major histocompatibility complex (MHC) molecules. The presentation of self-peptides plays a crucial role in the acquisition of T cell repertoire during thymic selection. We previously reported that the self-MHC class I peptide Ld 61-80 was immunogenic in syngeneic B10.A m...

متن کامل

Tight linkage between translation and MHC class I peptide ligand generation implies specialized antigen processing for defective ribosomal products.

There is mounting evidence that MHC class I peptide ligands are predominantly generated from defective ribosomal products and other classes of polypeptides degraded rapidly (t1/2 < 10 min) following their synthesis. The most direct evidence supporting this conclusion is the rapid inhibition of peptide ligand generation following cycloheximide-mediated inhibition of protein synthesis. In this st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 184 2  شماره 

صفحات  -

تاریخ انتشار 2010